People
Mads Nielsen
Contact
Collaboratory
Website
Mads's works
Collaboratories
AI Connects
Partial feedback online transfer learning with multi-source domains
Zhongfeng Kang, Mads Nielsen, Bo Yang, Mostafa M. Ghazi
Deep Learning-Based Assessment of Cerebral Microbleeds in COVID-19
Neus R. Ferrer, Malini V. Sagar, Kiril V. Klein, Christina Kruuse, Mads Nielsen, Mostafa M. Ghazi
Assessing Breast Cancer Risk by Combining AI for Lesion Detection and Mammographic Texture
Andreas D. Lauritzen, My C. von Euler-Chelpin, Elsebeth Lynge, Ilse Vejborg, Mads Nielsen, Nico Karssemeijer, Martin Lillholm
Active Transfer Learning for 3D Hippocampus Segmentation
Ji Wu, Zhongfeng Kang, Sebastian N. Llambias, Mostafa M. Ghazi, Mads Nielsen
Leveraging Shape and Spatial Information for Spontaneous Preterm Birth Prediction
Paraskevas Pegios, Emilie P. F. Sejer, Manxi Lin, Zahra Bashir, Morten B. S. Svendsen, Mads Nielsen, Eike Petersen, Anders N. Christensen, Martin Tolsgaard, Aasa Feragen
Online transfer learning with partial feedback
Zhongfeng Kang, Mads Nielsen, Bo Yang, Lihui Deng, Stephan S. Lorenzen
Robust cross-vendor mammographic texture models using augmentation-based domain adaptation for long-term breast cancer risk
Andreas D. Lauritzen, My C. von Euler-Chelpin, Elsebeth Lynge, Ilse Vejborg, Mads Nielsen, Nico Karssemeijer, Martin Lillholm
An Artificial Intelligence–based Mammography Screening Protocol for Breast Cancer: Outcome and Radiologist Workload
Andreas D. Lauritzen, Alejandro Rodríguez-Ruiz, My C. von Euler-Chelpin, Elsebeth Lynge, Ilse Vejborg, Mads Nielsen, Nico Karssemeijer, Martin Lillholm
CARRNN: A Continuous Autoregressive Recurrent Neural Network for Deep Representation Learning From Sporadic Temporal Data
Mostafa M. Ghazi, Lauge Sørensen, Sébastien Ourselin, Mads Nielsen
Machine learning and deep learning applications in microbiome research
Ricardo H. Medina, Svetlana Kutuzova, Knud N. Nielsen, Joachim Johansen, Lars H. Hansen, Mads Nielsen, Simon Rasmussen
A buffered online transfer learning algorithm with multi-layer network
Zhongfeng Kang, Bo Yang, Mads Nielsen, Lihui Deng, Shantian Yang